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An algorithm based on the compound matrix method is presented for solving difficult eigen- 
value problems. Details are given for systems of ordinary differential equations of fourth-order 
that are valid over connected domains coupled through interfacial conditions. As an example 
we examine the linear stability of two superposed fluids in plane Poiseuille flow and consider 
both interfacial and shear modes. The Orr-Sommerfeld system that describes linear stability is 
solved for a selected range of parameters. 0 1988 Academic Press, Inc 

1. INTRODUCTION 

In a series of papers Ng and Reid [4-63 and Davey [ 1 ] discuss the application 
of the compound matrix method for the numerical solution of linear two-point 
boundary value and eigenvalue problems involving stiff differential operators with 
separated boundary conditions. The basic idea of the compound matrix method is 
to convert a stiff two-point boundary value problem into an initial value problem 
that can be solved by standard shooting techniques. This is done by first computing 
the appropriate compound of the solution matrix (subject to prescribed initial con- 
ditions) by numerically integrating as an initial value problem the compound dif- 
ferential equation set the compound satisfies. In the case of an eigenvalue problem 
the integration of the compound differential system is also subject to satisfying an 
eigenvalue relation that is derived from the boundary conditions of the original 
problem. Once the compound has been determined numerically, an auxiliary set of 
equations (of lower order than the original problem) is then integrated backwards 
to determine the eigenfunction. The coefficients of the auxiliary set of equations are 
known in terms of the components of the compound. 

In this paper we demonstrate that the compound matrix method can be applied 
to equation sets valid over connected domains coupled through interfacial con- 
ditions. In particular we examine an eigenvalue problem that describes the linear 
stability of superposed Newtonian fluids in plane Poiseuille flow. Such a flow may 
be unstable to an interfacial mode as well as a shear mode. In the case of the shear 
mode, the differential operator is known to be stiff, in the sense that its solutions 
have widely differing growth rates. 
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In Section 2 we present a general algorithm for the compound matrix method for 
an eigenvalue problem described by two fourth-order linear systems valid over con- 
nected domains. The algorithm is based on the work of Ng and Reid [6] and 
Schwarz [7]. We derive the necessary eigenvalue relation and show how it may be 
expressed in terms of the compounds of the solution matrices for each fourth-order 
system. 

In Section 3 we present the details of the algorithm for solving the linear stability 
of two superposed fluids in plane Poiseuille flow. We also discuss how the 
algorithm relates to the stability of a single fluid. In Section 4 sample calculations 
for an interfacial mode and shear mode are given and the neutral stability curve for 
the shear mode is presented for a specific case. 

2. COMPOUND MATRIX METHOD ALGORITHM 

To illustrate the method for eigenvalue problems with interfacial conditions we 
will consider the following linear homogeneous system 

4’ = W, 06x< 1, (la) 

w’ = Gv, -TI<X<O, (lb) 

where F(x) = Cf&)l, G(x) = Cs&)l are 4 x 4 matrices and the solutions 
0 = C4ji(x)l, V = Ctijtx)l are 4 x 1 column vectors. We suppose that the boundary 
conditions at x = 1 and x = --n are separated and are given by 

RMl)=O, Pa) 

and 

QW-n)=O, (2b) 

where R and Q are 2 x 4 matrices. At the interface located at x = 0 we have 

PMO) + W(O) = 0, (3) 

where P and S are 4 x 4 matrices. 
Let $,, & be any two linearly independent solutions of (la) that satisfy the 

initial conditions (2a). The second compound y of the 4 x 2 solution matrix 
@ = [$, , (p2] is a 6 x 1 matrix having minors of @ as elements: 

YCi3i) = 4li42j- dljd213 (4a) 

where i= 1, 2, 3 and j= i + 1, . . . . 4. In lexicographic order of their indices the 
elements of y are 

Yl =A13 21, y,=y(l, 3), ...T y6 =y(3, 4)* (4b) 



COMPOUND MATRIX METHOD 21 

Using the algorithm provided by Schwartz [7], one can show that the differential 
compound system for y = [ y,, y,, . . . . y,]’ is given by 

Y’ = H(x) Y, (5) 

where the elements of H(x) are known in terms of the elements of F: 

H= 

Y-11 +f** f23 f24 -fu -f*‘l 0 
f32 fil +f33 f3‘l fn 0 -f,4 
f f43 fil +fi4 0 fn fi3 
-;1 fil 0 f**+f33 f34 -fm 
-f41 0 fx f43 f22+f44 f23 

_ 0 -f4* f31 -f42 f32 f33 +f44 

(6) 

The initial condition that y satisfies can be found from (4a) using (2a). Similarly, if 
z = [Z,) . ..) zJT is the second compound of the solution matrix I = [vi, VI*], the 
differential compound system for z is 

z’ = I(x) z, (7) 

where as before the elements of I are known in terms of the elements of G in the 
manner indicated by (6). w,, w2 are linearly independent solutions of (lb) that 
satisfy the initial conditions (2b). 

In general, the solutions of (la), (lb) consistent with boundary conditions at 
x = 1 and x = -n will have the form 

$=f41+@2, (84 

w=wl+w2. (8b) 

We can express the interfacial condition (3) in terms of Ql(0), &(O), v,(O), w2(0), 
and a vector of constants u = [K, 1, p, a]’ as follows 

cu=o, (9) 

Note, in deriving (10) we have partitioned P and S as follows 
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For a nontrivial solution we require 

det(C) = 0, (11) 

On using Laplace’s expansion of a determinant by complementary minors, we 
obtain 

- cm*Mw1)- (~:w*)(~:url)lc(PFoI)(P:$2)- (PTffh)(PT441 

- Cwv*mib)- (s~urz)(sTwl)lC(PT~l)(P~~~)- (PTMP:$dl 

- C~a%~mb) - (~:yr*)(~:yr,)lc(P:~,)(P;f9*) - (P:hNP:4b)l 

- L-mMG+h) - (STVI*)(S~W,)l[I(PT~,)(P~$*) - (P:4dPf4b)l 

- c~~:w*NGJ,)- (s4’w*)(s:wI)Ic(P:bl)(P~~~)- (P:MP:h)l. (12) 

The appropriate eigenvalue relation is derived by expressing det(C) in terms of the 
compounds y and z. The terms in the brackets are similar in form and thus it is 
sufficient to show that any one of the 12 terms can be expressed in terms of the 
compounds. Let Qj = [#i,, . . . . #JT and pi = [piI, . . . . pjJT, then after some manipu- 
lation one can show that 

(PTOI)(P~~*)-(PjT~I)(Pf~2)=(Pil PjZ-Pi*Pjl)YI + (PiI Pj3-Pi3PjllY2 

+(PilPj4-Pi4Pjl)Y3+tPi2Pj3-Pi3Pj2)Y4 

+(Pi2Pj4-P14P{*)Ys+(P,3P,4-Pi4Pj3hr (13) 

where y, , . . . . y, are the components of the second compound of @ and i #j. Similar 
expressions can be derived for the remaining 11 terms in (12). 

The key to the success of the compound matrix method is that the eigenvalue 
relation can be expressed in terms of the compounds y(0) and z(O), which in turn 
can be determined by integrating (5) and (7) from the boundary points 1 and --n 
toward the interface at x = 0. At x = 0 the eigenvalue relation det(C) = 0 must be 
satisfied and this is achieved by varying the eigenvalue parameter using a suitable 
iterative procedure. 

After the determination of the eigenvalue, one can proceed to determine the 
eigenfunctions 4 and \v from a set of auxiliary equations that may be derived from 
the elimination of K, ,I, p, CT from (8). For a fixed i, j with i #j one can easily show 
(Ng and Reid [6]) that 

&y(iJ)=fikCY(kA (bi-Ytk7 9 #jl (144 

4~yY(i,j)=fikCAkj) di-Y(k 9 #jl, (14b) 

where the summation is over the index k. The compound elements y(i, j) are defined 
in (4a). A similar set of auxiliary equations may be derived for Gi, $j. Any two 
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equations from (14) can be used to determine bi, 4j though some sets may be more 
appropriate (Ng and Reid [4]). The auxiliary equations for I$ and w are integrated 
backwards to boundary points 1 and --n once the initial conditions for the 
backward integration are found. Because of the unwieldy algebra, the details of this 
step for the general case are not given. In the example problem discussed below, the 
procedure for finding Q(O), ~(0) is outlined. 

3. EXAMPLE: LINEAR STABILITY OF SUPERPOSED FLUIDS 

We consider plane Poiseuille flow of two superposed liquids of different viscosity. 
The dimensionless velocity profiles for the base flow are 

u, = 1 +a1x+b,x2, O<x<l, 

and (15) 

U2 = 1 + a,x + b,x2, -n<x<O, 

where 

m-n’ 
al =r, n +n 

b, = -s, a,=!? 
m’ 

b2=& 
m’ (16) 

The subscripts 1,2 denote the upper and lower fluid, respectively; m and n are the 
viscosity and thickness ratios defined in terms of the lower fluid with respect to the 
upper. Linear stability analysis of the base flow (15) leads to the familiar Orr- 
Sommerfeld equation for the amplitude of the disturbance stream function for each 
fluid layer (Yih [ 111). Let $ be the solution vector that satisfies the Orr-Sommer- 
feld equation for the upper layer (expressed as a system of first-order equations as 
in (1)). Then the nonzero elements of F are 

fi2 =f*3 =f34 = 17 (17) 

f41=-{~4+i~R[~2(U,-c)+U;I]}, f4,=2a2+iclR(U,-c). 

Similarly if w is the solution vector that satisfies the Orr-Sommerfeld equations for 
the lower layer, the nonzero elements of G are 

g12 = g23 = g34 = 19 

(18) 
g,,= - 

I 

a4+ia;[a2(U2-c)+U;] ) g4,=2rx2+ia~(U2-r) 

where r = p2/p1 is the density ratio, R = p, U,,d,/p, the Reynolds number (U, being 
the interfacial velocity, and d, the thickness of the upper layer), a the wavenumber 
of the disturbance, and c the complex wave speed of the disturbance. 
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The no-slip and impenetrability conditions on 4 and \v at the channel walls x = 1, 
x = --n determine the nonzero elements of R and Q in (2): 

rll = rz, = 1, 411 = 421 = 1. (19) 

Continuity of velocity and stresses at the interface x = 0 yield the nonzero elements 
of P and S: 

PI1 = 13 
p2,= Ja+,) 

c-l ’ p22= 1, 

p31 = a2, p33= 1, p41= -iuR[a, + (F+ u2S)/(c- l)], VW 

p42 = 3u2 - hR(c - 1 ), p44= -1, 

and 

S,I = - 1, $22 = - 1, s3r = -mcf2, s33 = -m, 

sql = ictRra,, s 42 = - 3mu2 + icrRr(c - 1 ), 
(2Ob) 

s44 = m. 

Here F = (r - 1) gd, /Ui and S = a/p, d, Vi are the dimensionless groups expressing 
the effects of gravity g and interfacial tension cr. For a discussion on the derivation 
of the interfacial conditions (20), the reader is referred to the paper by Yih [ll]. 

Now let 4, and e2 be two solutions of (la) that satisfy the initial conditions (2a) 
(see also (19)) 

$1(l) = co, 0, l,OIT? $2(l)= co, 09 0, UT, (21) 

and similarly let w,, \v2 be two solutions of (16) that satisfy the initial conditions 
(2b) (see also (19)) 

v*(-n) = co, 0, 1, Ol’, \112(-n)= IT, O,Q IIT. (22) 

Then from (5) we find that the second compound y of @ satisfies 

(23) 

(24) 

Y;=Y2, Y;=Y,+Y,, 

u;=s43 Y,+Ys+ Y& =y*> 

Y; = -f41 Yl +f43 Y4 +Y6, Yb = -f41 Y2. 

The initial condition for y follows from (21) and (4a): 

y(1)=co,o,o,o,o, 11’. 

Similarly the second compound z of Y satisfies the same set of equations with f43 
andf,, replaced with g,, and g,, . The same initial condition for z as in (24) applies 
also at x= --n. 
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At x = 0, we assume that the vectors 4,) &, wr, vz take the values 

41(O) = C411,412~ 41’9 hiIT’, 40) = CdZl~ 4223 4233 hlT 
WI(o)= CG113 $12, $13, h41T~ w(O)= c+219 ti*2,11/239 hlT. 

31 

(25) 

Thus the matrix C is given by 

C= 

4 IL 4 21 -1(111 421 
al-a2 

412+7h h2+yPzI -sn -+22 
~43 + a2411 423 + a*& -m(ti13+a2ti11) --~(ti~~ + a2ti2,) 

-iWc,QI,2+~lhl) -iaR(c,&+~,&) iaWc~~12+411) iaR4clG22+~2J121) 

-h+3a2h2 -d24 + 3a2d22 + 44~ - 3a2$ 12) +m(*24-3a2G22) 

-iaR(F+ a2S) f$ -iaR(F+a’S)$ 

26) 

The existence of nontrivial solutions requires that det(C) =0 and expanding 
the determinant we derive the appropriate eigenvalue relation in terms of the 
compounds y and z: 

[z,y,a2(m-l)+z,y,-mz,y,][3a2(m-l)-iaRc,(r-l)] 

+“lY2 
[ 

-icfR(r- 1) a, + 3a2m (4 - a21 + iaR v+ aZS) 

Cl Cl 1 
+(z,y3-mz3y,)a2(m-1)+(z2y3-z3y2)m (6 - a21 Cl 
- czl Y6 + m2z6 yl) + m(z2y5 + z5 y2) - m(Z3 y4 + Zq y3) 

iaR(r-l)a,-3a2 (~1---~2)-~~~(~+a~~) =o. 

I 
(27) 

Cl Cl 

For convenience we have defined c, E c - 1. 
For the backward integration we set i = 1, j = 2 in (14). The auxiliary equations 

for 4 and \v are then 

Yld;-Y242+Y,h =o, 4; = 429 (28) 

and 

581/74/l-3 

zl*;-z2IcI2+z4*L=o, 4% = $2. (29) 
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One can normalize i,(O) = $,(O) = 1, and the initial conditions on tj2(0) and t,b2(0) 
can be found as follows. Equations (28) and (29) are evaluated at x = 0. At the 
interface it follows from (20) and (3) that 

#2(0)-~,(0)-~,(O)(a2-a1)=0, 
Cl 

(30) 

~3(0)+~2~*(0)--mCII/,(0)+~21C/I(O)I =o, (31) 

and from (17) and (18) we have 

4;=43, *;=+3. (32) 

Thus 4; and I& may be eliminated from (28) and (29) with the use of (30), (31), 
and (32). The result is 

(z1Y*-v,z*)~2(0)= z1y,cr2(m-1)+z,y4-mz4y,+ 
[ 

(4 - ~2) 
my,z, h(O). c* 

I 
(33) 

Once @2(O) is determined, (30) can be used to find $*(O). 
It is interesting to see how the above procedure relates back to the problem of 

stability of a single fluid elaborated on by Ng and Reid [4]. In this case 
m=r=n=l, F=S=O, a,=a,=O, and b,=b,=l. The channel walls are now at 
x = + 1, and from (17) and (18) it follows that 

f4311 - xl = g4& - I), f41(1 -x)=g,,(x- 1). W) 

The same relationships hold for the second derivatives of the above, viz., 

j-&(1 -x)=g&(x- l), f&(1 -x)=g&(x- l), Wb) 

while the first derivatives are of opposite sign, viz., 

f&(1 -x)= -g&(x- l), fkr(l -x)= -g&,(x- 1). (34c) 

Using (23) and the initial condition (24), we can write a Taylor series for y around 
the point x = 1, and the same can be done for z around x = - 1. For example, 
consider the Taylor series for y, and zr : 

+(14~,+3s:,+4f,,)(1_x)8+ . . . 
8! 

(35) 
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Using the results in (34) it follows then that the coefficients multiplying even and 
odd powers of (1 -x) are even and odd, respectively, which suggests that 
vi(x) = zl( -x). If the radius of convergence of the Taylor series is less than unity, 
analytic continuation can be invoked to complete the argument. The same is true 
for y,, y,, y6 and z3, z4, z6 while the opposite holds for yZ, y, and z2, z5, viz., 
Y26) = -z2( -x). 

Now returning to the interfacial condition (27) and using the above results, we 
see it reduces to 

YlY6+Y2Y5+Y3Y4=“. (36) 

Next we use the quadratic identity (Ng and Reid [4]) 

Y,Y6-Y2Y5+Y3Y4=” (37) 

to show that the interfacial condition for the single fluid case becomes 

Y*Y5=Q (38) 

From (4) we see that the vanishing of y, corresponds to an even mode for which we 
require &(O) = 0 and (33) agrees with that. The vanishing of yz corresponds to an 
odd mode for which we require d,(O) = 0. The interfacial condition (33) seems 
indeterminate. Note, however, that (33) (with m = 1, a, = a, =0) may be also 
expressed as 

h(O) Z3Yl -Y,Z, -= 
MO) Z*Y5-Z,Y,’ 

(39) 

from which it follows that $,(O) = 0. To show that (39) is equivalent to (33) (with 
m = 1, a, = a2 = 0) we must prove that 

(z,Y4-z4Yl)(z3Yl-zlY5)=(z,Y2-Y,z*)(z*Y5-z5Yl). (40) 

This is easily done by using the quadratic identity (37) for y and a similar 
expression for z to obtain from (40) the equivalent relation 

(Ylz6+zlY6)-(z2Y5+Y2z5)+(z3Y4+z4y3)=~~ (41) 

Replacing 

y6=Y2Y5--Y3Y4 
Z6 = 

z2z5 - z3z4 

Yl ’ 
3 

Zl 

we find that the LHS of (41) vanishes identically. 
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4. SAMPLE CALCULATIONS 

Yih [ 1 l] showed that plane Poiseuille flow of two superposed fluids of different 
viscosity will be unstable to a small wave number interfacial mode for arbitrary 
small value of the Reynolds number. The instability is related to the jump in 
viscosity across the interface. On the other hand, if the Reynolds number is 
sufficiently high, the flow may also be unstable to a shear mode, which, as is well 
known, is the unstable mode for the single fluid case (Drazin and Reid [2]). To the 
best of the authors’ knowledge, linear stability of plane Poiseuille flow of two super- 
posed fluids with respect to a shear mode has never been addressed theoretically or 
numerically in the literature, even though the experiments of Kao and Park [3] 
suggest that the flow may be unstable to a shear mode. 

To illustrate the efficiency of the compound matrix method for studying linear 
stability of superposed fluids we have performed calculations for large wave num- 
bers and Reynolds numbers where traditional methods such as the standard 
shooting method and the finite element method (Yiantsios and Higgins [lo]) are 
likely to encounter numerical difficulties, The calculations were done on a 
VAX 1 l/785, using a constant step-size fourth-order Runge-Kutta procedure with 
double precision arithmetic. For almost all cases a step size of 0.001 was adequate 
to give at least 8-digit accuracy. 

For our first sample calculation we examine flow stability with respect to the 
interfacial mode for large values of the wavenumber a. We have shown previously 
(Yiantsios and Higgins [9]) by asymptotic methods that in the limit a + 00 the 
wave speed c( = c, + ci) is given by 

This formula was 
Fig. 1 we compare 

c=l+iR a:(- u2,-, 
m2(m+l) . 

derived under the assumptions that R = O(l), r = 1, S= 0. In 
the imaginary part of the wave speed, ci, calculated by the com- 

1r2 . I I I Illll 

FIG. 1. Imaginary part of the wave speed, c,, for an unstable interfacial mode versus wavenumber G(; 
--- theoretical value given by Eq. (42). Flow parameters: m = 5, R = 1, S= 0, r = 1, F= 0, n = 1. 



COMF’OUND MATRIX METHOD 35 
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FIG. 2. Neutral stability curve for the shear mode. At criticality R,= 10228.8, CC= 1.274. Flow 
parameters:m=lO, r=l, F=O, S=O, n=l. 

pound matrix method with the value obtained from the above asymptotic formula. 
For a > 100, the numerical value for ci is indistinguishable from the theoretical 
value. The values for the flow parameters are indicated in the figure caption. We are 
also able to reproduce Yih’s [ 111 small wave number results with similar accuracy, 
though this is not a stringent test of the algorithm since the problem is not 
numerically stiff at low Reynolds numbers. 

Our next sample calculation considers flow stability with respect to a shear mode. 
In Fig. 2 we plot the neutral stability curve for the shear mode in the plane of the 
Reynolds number and wave number for a viscosity ratio m = 10. In the calculations 
we have set n = r = 1, F= S= 0. The critical Reynolds number R, for the shear 
mode is 10228.8, and the wave number c( at criticality is 1.274. Not surprisingly, the 
neutral stability curve for the superposed fluids is qualitatively similar in shape to 
that for a single fluid in plane Poiseuille flow. (Recall, from linear stability analysis 
of plane Poiseuille flow of a single fluid R, = 5772.2 [2].) Note, the Reynolds 
number for the sample calculation is defined in terms of the properties of the upper 
layer, which is the less viscous of the two. 

In Fig. 3 we have plotted the real and imaginary parts of the amplitude of the dis- 
turbance stream function (#,, +,) for the shear mode at criticality (R, = 10228.8, 
a = 1.274). Near the wall x = 1, the imaginary part of the eigenfunction d(,i) 
undergoes a rapid change in its derivative. Since the wave speed at criticality is 
c, =0.8257, and the critical point occurs at x=0.924 (i.e., where U,(x) = c,), this 
suggests that the characteristic wiggle in 4’1’) is indicative of eigenfunction behavior 
in a critical layer. (The wiggle is not a consequence of round-off error from the 
numerical integration.) 
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-0.2 

-0.4 
-10 -0.5 0 0.5 1.0 

X 

FIG. 3. (a) Real part of q5,, $1 for the shear mode at criticality. Flow parameters same as in Fig. 2. 
(b) Imaginary part of &, $, for the shear mode at criticality. Flow parameters same as in Fig. 2. 

To pursue this issue further, it is instructive to examine how the eigenfunction 4’,i) 
near a critical point evolves as the viscosity ratio is changed. For the purpose of 
comparison we consider the single fluid case m = 1, R = 10,000, a = 1. The critical 
points for this flow occur at x = f0.8732, and the eigenfunction #r) exhibits charac- 
teristic extrema in the neighborhood of the critical points [2]. As m increases, the 
lower fluid spanning the region - 1 < x < 0 becomes increasingly more viscous, and 
in the limit m + co, it becomes passive with regard to any shear mode that is 
excited in the upper fluid. Consequently, in this limit the eigenfunction 
corresponding to the unstable shear mode will have similar characteristics to the 
eigenfunction for the single fluid case except it now will be centered around x = 0.5. 
Indeed, this is borne out in Fig. 4 where we have plotted the imaginary part of the 
amplitude of the disturbance stream function (@, +I’)) for different viscosity ratios. 
In order to make clear the similarities with the single fluid case, we have normalized 
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-0.2 

-0 4 

-0 6 

-1.0 -0.5 0 0.5 1.0 

X 

FIG. 4. Dependence of the imaginary part of dr, r)r on viscosity ratio: - R* = 20,000, a = 2, 
m=106;---R*=20,000,a=2,m=10’;---R~=7534,a=2.16,m=104. 

the eigenfunction #i to be unity at x = 0.5 (instead of at x = 0) and have used the 
maximum velocity in the upper fluid as the characteristic velocity (instead of the 
interfacial velocity); the new definitions for the Reynolds number and wave speed 
are (for n = 1) 

R*=R[l+(m-1)*/8(m+l)] 

c* = c/[ 1 + (m - 1)*/8(m + l)]. 

In Table I we show how the locations of the critical points for the shear mode vary 

TABLE I 

Dependence of the Critical Points on Viscosity Ratio 

Viscosity 
Ratio m 

Critical points 
Reynolds Wave number Wave speed 

number R* a C* X1 x2 

10” 7,534 2.16 0.29177 0.07903 0.92076 
105 20,000 2 0.23780 + iO.00509 0.06346 0.93651 
106 20,000 2 0.23755 + iO.00387 0.06340 0.93659 
cd 20,000 2 0.23752 + iO.00373 0.0634 0.9366 

a Wave number and wave speed evaluated at criticality R: = 7,534. 
b Plane Poiseuille flow, Thomas [S]. 
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with the viscosity ratio. For comparison, we also list the values for the wave speed 
and critical points for plane Poiseuille flow (Thomas [S]). Note, we have resealed 
Thomas’ values to account for the fact that the flow domain for 4’1’) is 0 d x < 1, and 
not -l<x<l. 

It is evident from Fig. 4 that for a viscosity ratio m = lo6 (R* = 20,000, c1= 2), dr) 
is almost symmetric about x = 0.5 (as it should be when the lower fluid is passive), 
and is similar in shape to the eigenfunction computed by Thomas for plane 
Poiseuille flow (see also [2]). The wave speed and the critical points for this eigen- 
function are in quantitative agreement with the values reported by Thomas (see 
Table I). When the viscosity ratio is decreased to lo’, there is a marked change in 
4’1’). The profile becomes noticeably skewed about x = 0.5, and @ increases in 
magnitude, indicating that the lower fluid can now no longer be regarded as 

1.0 

0.5 

+:‘q’ 

0 

-0.5 

a I (r) 
*1 

J 
I 

L +lf) 
1 

I I 

X 

FIG. 5. (a) Real part of qJ1, +, for an unstable interfacial mode at R = 10228.8, a = 1.274, and 
c = 1.35653 + io.23267. Flow parameters same as in Fig. 2. (b) Imaginary part of 4, , $1 for an unstable 
interfacial mode at R = 10228.8, a = 1.274, and c = 1.35653 + fi.23267. Flow parameters same as in Fig. 2. 
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passive. The influence of the lower fluid on 4’1’) is perhaps more evident for the case 
m = 104, R,* = 7,534, CI = 2.16 (Fig. 4, Table I). Note, these parameter values define 
a point on the neutral stability curve (ci=O). For this viscosity ratio there is a 
dramatic change in the shape and magnitude of b(,ij near the interface x=0. Our 
calculations show that there are no appreciable differences in the real part of the 
eigenfunctions (4’;), $(II)) for the three cases shown in Fig. 4. 

We now return to Fig. 2. Although the flow at R = 10228.8 is neutrally stable 
with respect to the shear mode, the flow is also unstable to an interfacial mode. In 
Fig. 5 we have plotted the eigenfunctions 4,, $r corresponding to this unstable 
interfacial mode (ci > 0). The wave speed for the interfacial mode at c1= 1.274, 
R, = 10228.8 is c = 1.35653 + i 0.23267. It is interesting to note that the growth rate 
for the interfacial mode, given by CIC~, need not be negligible. Indeed, as our 
calculations show, in many cases the growth rate for a shear mode is an order of 
magnitude or more smaller than that for the corresponding interfacial mode. Thus, 
the possibility exists for an interfacial mode to dominate flow instability even when 
an unstable shear mode is present. This issue and how it relates to the experiments 
of Kao and Park [3] is beyond the scope of this paper and is discussed elsewhere 
(Yiantsios and Higgins [9]). 

4. CONCLUDING REMARKS 

The advantages of the compound matrix method over other shooting tech- 
niques for solving difficult, eigenvalue and boundary value problems have been 
convincingly demonstrated by Ng and Reid [3-51 and Davey [l]. As we have 
shown in this paper, the method is capable also of solving eigenvalue problems with 
interfacial boundary conditions. Because an iterative technique is used to calculate 
the eigenvalues, a potential disadvantage of the compound matrix method is that 
one needs to have an initial guess for the eigenvalue and some knowledge of 
whether other modes are unstable. From our experience, we have found it useful to 
complement the compound matrix method with a method that calculates all the 
eigenvalues for the discretized problem (e.g., finite elements or finite difference), and 
then use the compound matrix method to refine the calculations for a particular 
mode. Thereafter, first-order continuation can be used with the compound matrix 
method to track a mode through a required parameter space. 
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